Unit 6 - Chemical Bonding

Part III. Molecular Compounds

%Potential Energy-atoms bond to lower their potential energy (and gain stability)

 based on position of an object
 low PE = high stability

#Potential Energy Diagram

Distance between Hydrogen Nuclei (pm)

#Potential Energy Diagram

Distance between Hydrogen Nuclei (pm)

#Bond Energy

Bond Energy Short bond = high bond energy

Bond	Bond length (pm)	Bond energy (kJ/mol)	Bond	Bond length (pm)	Bond energy (kJ/mol) 346 305		
н–н	74	436	C-C	154			
F-F	141	159	C-N	147			
CI-CI	199	243	C-O	143	358		
Br-Br	228	193	С-Н	109	418		
I-1	267	151	C-CI	177	327		
H-F	92	569	C-Br	194	285 163		
H-Cl	127	432	N-N	145			
H-Br	141	366	N-H	101	386		
H–I	161	299	O-H	96	459		

B. Lewis Structures

#Electron Dot Diagrams

- show valence e⁻ as dots
- distribute dots like arrows in an orbital diagram
- 4 sides = 1 s-orbital, 3 p-orbitals
- <u>EX</u>: oxygen

B. Lewis Structures

#Octet Rule

- Most atoms form bonds in order to obtain 8 valence e⁻
- Full energy level stability ~ Noble Gases

B. Lewis Structures

Xonpolar Covalent - no charges

#Polar Covalent - partial charges

C. Diatomic Molecules

%The Seven Diatomic ElementsBr2I2N2CI2H2O2F2

H																	2 <mark>He</mark>
Li ³	Be ⁴											B ⁵	C 6	Ν	0	F	10 Ne
н Na	12 Mg											Al	14 Si	15 P	S ¹⁶	Cl	۱8 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	\mathbf{Ag}^{47}	48 Cd	49 In	50 Sn	51 Sb	52 Te	Ι	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	At 85	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun								

The attraction of an atom for the shared electrons that form a covalent bond between it and another atom is called its

a. electron affinity

b. electronegativity

c. resonance

d. hybridization

#A compound that vaporizes at room temperature is most likely to be

a. molecular compound

b. ionic compound

- c. metal
- d. brittle compound

If 2 covalently bonded atoms move closer than a distance of the bond length, the potential energy of the atoms

a. becomes negativeb. decreasesc. increases

d. remains constant

Here are <u>diatomic elements</u> that are found in nature as diatomic elements.

What information is provided in a molecular formula?

Number of atoms of each element

What are the only elements that exist mostly as uncombined elements in nature?

a. alkali metals

- b. transition metals
- c. transuranium elements
- d. noble gases