IDEAL STOICHIOMETRY PARTNER ACTIVITY: Work with a partner on solving these problems using Dimensional Analysis. You will be able to work together on the quiz next class as well. Honors

Mole-Mole Problems

1. $N_2 + 3H_2 \rightarrow 2NH_3$

How many moles of hydrogen are needed to completely react with two moles of nitrogen?

2. $2KClO_3 \rightarrow 2KCl + 3O_2$

How many moles of oxygen are produced by the decomposition of six moles of potassium

3. $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

How many moles of hydrogen are produced from the reaction of three moles of zinc with an

4. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

How many moles of oxygen are necessary to react completely with four moles of propane

Volume-Volume Problems

5. $N_2 + 3H_2 \rightarrow 2NH_3$

What volume of hydrogen is necessary to react with five liters of nitrogen to produce ammonia

6. What volume of ammonia is produced in the reaction in problem 5?

7. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ If 20 liters of oxygen are consumed in the above reaction, how many liters of carbon dioxide are produced?

8.	$2CO + O_2 \rightarrow 2CO_2$
	How many liters of carbon dioxide are produced if 75 liters of carbon monoxide are burned in
	oxygen? How many liters of oxygen are necessary?
	How many liters of carbon dioxide are produced if 75 liters of carbon monoxide are burned in oxygen? How many liters of oxygen are necessary? 75 LCO molCO 2 molCO 22.4 LCO 22.4 LCO 22.4 LCO 2 molCO 1 mol O2 23.5 LO2 22.4 LCO 2 molCO 1 mol CO 2 molCO 1 mol O2 23.5 LO2
ss-	Mass Problems
9.	$2KClO_3 \rightarrow 2KCl + 3O_2$
	How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose?

10. $N_2 + 3H_2 \rightarrow 2NH_3$ How many grams of hydrogen are necessary to react completely with 50.0 g of nitrogen in the above reaction? $50.09 N_2 \quad | \text{Imol N}_2 \quad | \text{3 mol Hz} \quad | \text{2.02g Hz} = | \text{10.8g Hz} |$ $28.029 N_7 \quad | \text{Imol N}_2 \quad | \text{Imol N}_2 \quad | \text{Imol Hz} \quad | \text{2.02g Hz} = | \text{10.8g Hz} |$

11. How many grams of ammonia are produced in the reaction in problem 10?

12. $2AgNO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2$ How many grams of silver chloride are produced from 5.0 g of silver nitrate reacting with an excess of barium chloride?

Mixed Problems

Ma

13. $N_2 + 3H_2 \rightarrow 2NH_3$

What volume of ammonia at STP is produced if 25.0 g of nitrogen gas is reacted with an excess of hydrogen gas?

14. $2KClO_3 \rightarrow 2KCl + 3O_2$

If 500 of potassium chlorate is decomposed, what volume of oxygen gas is produced at STP?

5. How many grams of potassium chloride are produced in problem 14?

$16. \ 2A C _3 \rightarrow 2A + 3C _2$							
If 10.0 g of aluminum chloride are decomposed, how many molecules of chlorine gas are							
produced?							
10,09 AICI3 Imol	AICI3 3m	olc12	6,02x	1023 molec.	EL 77×1022		
10.09 AICI3 Imol	34g AICI3 2 W	iol AICl3	Imol	ClZ	Clz		
Stoichiometry with Aqueous Solutions and Gases							
17. If I combined calcium hydroxide with 0.0750 L of 0.500 M HCl, how many grams of calcium							
chloride would be formed? Write the balanced equations: Ca(OH) 2+2HCI -> CaCl2 +2H2(
0.0150 LHCI 0.500 mol HCI I mol CaCh 1110,989 CaCh 2 00 Ch							
1 L HCI 2 mal HCI I mal CaCl2 2,089 CaCl2							
18. Calcium carbonate decomposes at high temperatures to form carbon dioxide and calcium oxide.							
How many grams of calcium carbonate will I need to form 3.45 liters of carbon dioxide at STP?							
Cacoz -> coz + cao							
3.45LCOZ 1malCO2 1malCaCO3 100,09a CaCO3 = 15.40 22.4102 1malCO2 1malCaCO3 = 15.40							
3,432	JOZ I MOICOZ	Imal Ca	(03	100,099	(ca(0)3 = 15, 40		
	22.410	2/1 mod C	02	1 mol Cx	De Cocos		
19. Ethylene (C₂H₄) burns in oxygen to form carbon dioxide and water vapor. How many liters of							
water can be formed if 1.25 liters of ethylene are consumed in this reaction at STP?							
$C_2H_4 + 30_2 \rightarrow 20$	202 + 2H2C)					
1.25 L C2 Hy Ima C2Hy 2mal H20 22.4 CH20 2.50L							
22.4 LCztlu ImolCztlul Imattzo Hzo							
20. When chlorine is added to acetylene, 1,1,2,2-tetrachloroethane is formed:							
$2Cl_{2(g)} + C_2H_{2(g)} \rightarrow C_2H_2Cl_{4(1)}$							
How many liters of chlorine will be needed to make 75.0 grams of C2H2Cl4?							
75.0g C2H2Cly 1 mol C2H2Cly 2 molClz 22.4 LCl2 = 20.0 LCl							
	167.84gC21	zchy Im	ol CzHz	clu I mol	LCIZ 20,01012		