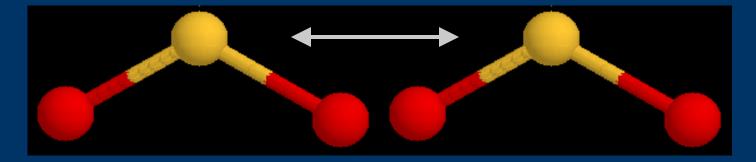
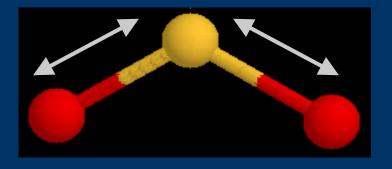
Unit 6 Molecular Compounds


I. Intermolecular Forces



A. Definition of IMF

Attractive forces between molecules.

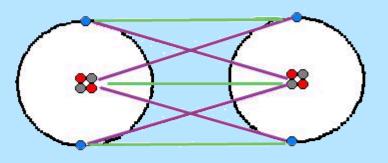
 Much weaker than chemical bonds within molecules.

a.k.a. van der Waals forces

B. Types of IMF

The weakest IMF are called van der Waal's forces - there are two kinds:

• #1. Dispersion forces (London Dispersion Forces)


#2. Dipole-Dipole forces

#1. Dispersion forces (London Dispersion Forces)

- The London dispersion force is the weakest intermolecular force.
- London forces are the attractive forces that cause nonpolar substances to condense to liquids and to freeze into solids when the temperature is lowered sufficiently.

Example:

London forces between two Helium atoms

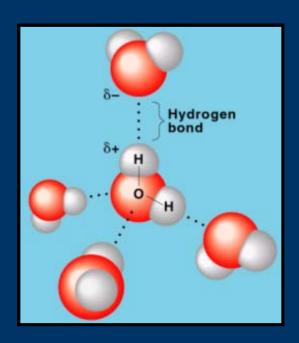
Repulsive forces

— Attractive forces

2. Dipole - Dipole Attractions

- Dipole-Dipole Forces occurs when polar molecules are attracted to each other.
- Dipole interaction happens in water
 - positive region of one molecule attracts the negative region of another molecule.

Dipole-Dipole Attractions



These charges are called induced dipoles

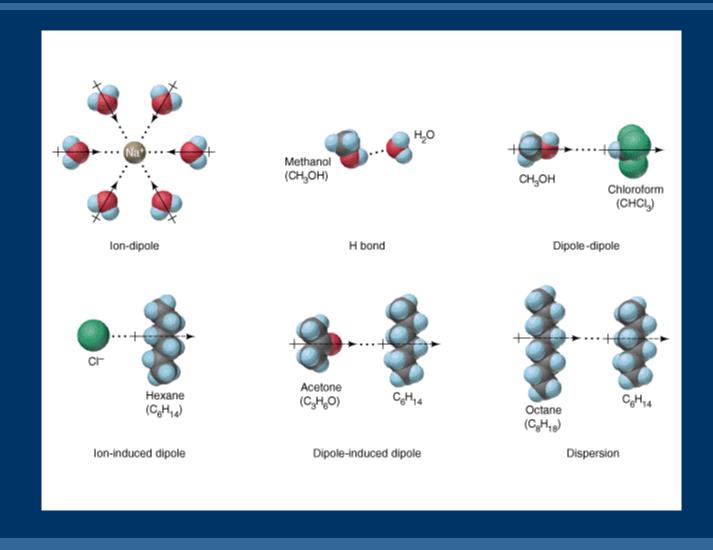
B. Types of IMF

Hydrogen Bonding

Hydrogen bonding is actually an intermolecular attraction that forms between the hydrogen of one molecule and a small, highly electronegative element in an adjacent molecule. Typically this is Fluorine (HF), Oxygen (H_20) or **Nitrogen** (NH_3) .

B. Types of IMF

	LONDON DISPERSION FORCES	DIPOLE-DIPOLE FORCES	HYDROGEN BONDING
Definition	 Attraction between 2 instantaneous dipoles. Asymmetrical electron distribution. All atoms & molecules. 	 Attraction between 2 permanent dipoles. Polar molecules. 	 Attraction between molecules with N-H, O-H, & F-H bonds. Extremely polar bonds ⇒ very strong dipoledipole force.
Diagram	δ- δ+ δ- δ+ HH	δ + δ - δ + δ - δ - δ H C I	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Relative Strength	weakest	medium strength	strongest
Other Information	Increase in strength as molar mass increases (more electrons).	Stronger when molecules are closer together	Not chemical bonding.


C. Determining IMF

- ♦ NCl₃
 - polar = dispersion, dipole-dipole
- ◆CH₄
 - nonpolar = dispersion
- ♦HF
 - H-F bond = dispersion, dipoledipole, hydrogen bonding

Now go to a computer ...

http://www.science.uwaterloo.ca/~cc hieh/cact/c123/intermol.html
Student Activity

Visual Intermolecular Forces

