Liquids & Solids

II. Physical Properties

(p. 363 - 371)

Review of Intermolecular Forces -IMF

	LONDON DISPERSION FORCES	DIPOLE-DIPOLE FORCES	HYDROGEN BONDING
Definition	 Attraction between 2 instantaneous dipoles. Asymmetrical electron distribution. All atoms & molecules. 	 Attraction between 2 permanent dipoles. Polar molecules. 	 Attraction between molecules with N-H, O-H, & F-H bonds. Extremely polar bonds ⇒ very strong dipole- dipole force.
Diagram	$\begin{array}{c} \delta - & \delta + & \delta - & \delta + \\ H H & H H \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Relative Strength	 weakest 	 medium strength 	 strongest
Other Information	 Increase in strength as molar mass increases (more electrons). 	 Stronger when molecules are closer together 	Not chemical bonding.

A. Liquids vs. Solids

	LIQUIDS	SOLIDS	
IMF Strength	Stronger than in gases	Very strong	
Fluid	У	N	
Density	high	high	
Compressible	N	N	
Diffusion	slower than in gases	extremely slow	

B. Liquid Properties

Surface Tension

 attractive force between particles in a liquid that minimizes surface area

B. Liquid Properties

Capillary Action

 attractive force between the surface of a liquid and the surface of a solid

water

mercury

C. Types of Solids

- Crystalline repeating geometric pattern
 - covalent network
 - metallic
 - ionic
 - covalent molecular

decreasing m.p.

Amorphous - no geometric pattern

Read pages 340-341 in the Blue Modern Chem. Book

Metallic

Ionic (NaCl)

Covalent Molecular (H2O)

Covalent Network (SiO₂ - guartz) Amorphous (SiO₂ - glass)

Record the properties of each of these 5 types of solids in your notes