Ch. 3 \& 7 - The Mole

II. Molarity
 (p. 412-415)

A. Molarity

- Concentration of a solution. substance being dissolved

$$
\text { Molarity }(M)=\frac{\text { moles of solute }}{\text { liters of solution }}
$$ total combined volume

A. Molarity

2 M HCl What does this mean?

$$
M=\frac{m o l}{L}
$$

$$
1 L
$$

B. Molarity Calculations

 molar mass 6.02×10^{23}($\mathrm{g} / \mathrm{mol}$)

B. Molarity Calculations

- How many grams of NaCl are required to make 0.500L of 0.25 M NaCl ?

$0.25 M=\frac{0.25 \mathrm{~mol}}{1 \mathrm{~L}}$
1 L

$$
=7.3 \mathrm{~g} \mathrm{NaCl}
$$

B. Molarity Calculations

- Find the molarity of a 250 mL solution containing 10.0 g of NaF .

\section*{| 10.0 g | 1 mol |
| :--- | :--- |
| | 41.99 g |$=0.238 \mathrm{~mol} \mathrm{NaF}$}

L

$$
M=\frac{0.238 \mathrm{~mol}}{0.25 \mathrm{~L}}=0.95 \mathrm{M} \mathrm{NaF}
$$

