
Names & Formulas of Ionic Compounds

www.lab-initio.com

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?"

Monatomic ion:

• single atom with a positive or negative charge.

Table 9.1

Ionic Charges of Representative Elements

1A	2A	3A	4A	5A	6A	7A	8A
Li ⁺	Be ²⁺			N ₃ -	O ²⁻	F ⁻	
Na ⁺	Mg ²⁺	AI^{3+}		P3-	S ²⁻	CI-	
K ⁺	Ca ²⁺			As ³⁻	Se ²⁻	Br ⁻	
Rb ⁺	Sr ²⁺					-	
Cs ⁺	Ba ²⁺			end	in ·	-ide	

Metals with More than One Ionic Charge

 Some <u>transition metals</u> form more than one cation with different charges

ex - Iron can form two different cations:

Fe²⁺ - Iron(II)

Fe³⁺ - Iron (III)

Caution: Silver is always Ag+

Zinc is always Zn²⁺

Metals with More than One Ionic Charge

Group 14 metals also form multiple cations
 Tin can form two different cations:

```
Sn<sup>2+</sup> - tin(II)
Sn<sup>4+</sup> - tin(IV)
```

Lead can form two different cations:

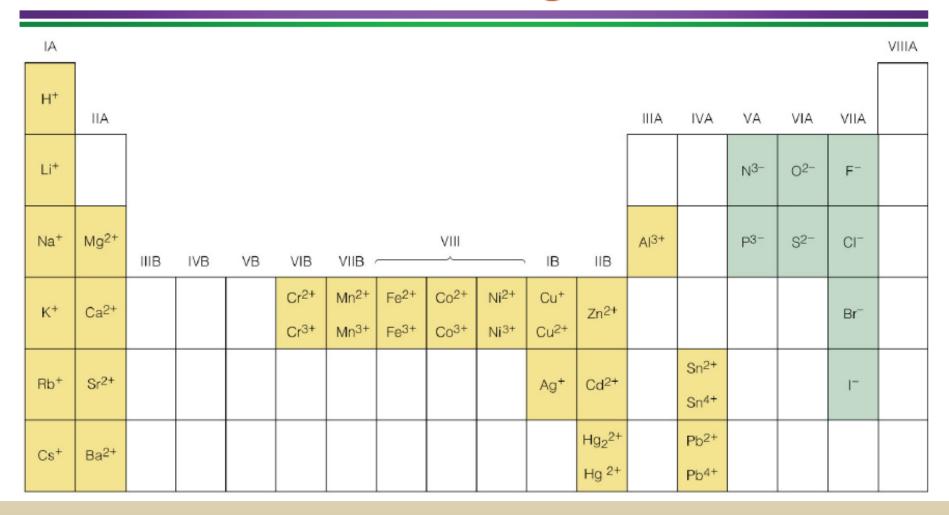
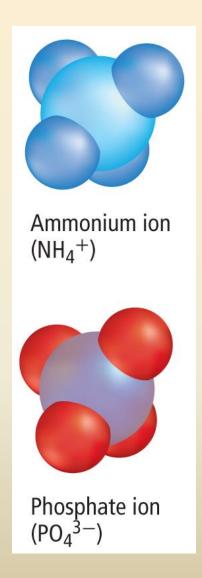

```
Pb<sup>2+</sup> - lead(II)
Pb<sup>4+</sup> - lead(IV)
```

Table 9.2

Symbols and Names of Common Metal Ions with More than One Ionic Charge


Symbol	Stock name	Classical name
Cu ⁺	Copper(I) ion	Cuprous ion
Cu ²⁺	Copper(II) ion	Cupric ion
Fe ²⁺	Iron(II) ion	Ferrous ion
Fe ³⁺	Iron(III) ion	Ferric ion
*Hg ₂ ²⁺	Mercury(I) ion	Mercurous ion
Hg ²⁺	Mercury(II) ion	Mercuric ion
Pb ²⁺	Lead(II) ion	Plumbous ion
Pb ⁴⁺	Lead(IV) ion	Plumbic ion
Sn ²⁺	Tin(II) ion	Stannous ion
Sn⁴+	Tin(IV) ion	Stannic ion
Cr ²⁺	Chromium(II) ion	Chromous ion
Cr ³⁺	Chromium(III) ion	Chromic ion
Mn ²⁺	Manganese(II) ion	Manganous ion
Mn³+	Manganese(III) ion	Manganic ion
Co ²⁺	Cobalt(II) ion	Cobaltous ion
Co ³⁺	Cobalt(III) ion	Cobaltic ion

Ion charges

Polyatomic Ions

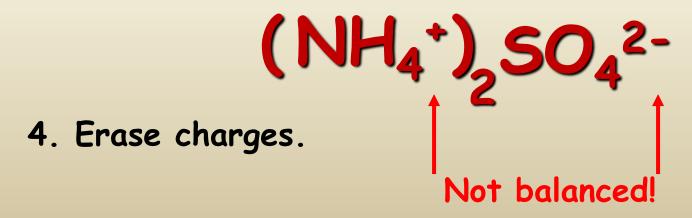
 Groups of atoms with positive or negative charge

Names and Formulas of Common Polyatomic Ions

<u>Name</u>	Symbol	Charge
ammonium	NH ₄ ⁺	+1
nitrate	NO ₃ -	-1
nitrite	NO ₂ -	-1
acetate	$C_2H_3O_2^-$	-1
hydroxide	OH-	-1
hydrogen carbonate	HCO ₃ ·	-1
(bicarbonate)		
carbonate	CO ₃ ² -	-2
sulfate	SO ₄ ² -	-2
sulfite	SO ₃ ²⁻	-2
phosphate	PO ₄ ³ -	-3

Example: Barium nitrate

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>.


Example: Barium nitrate

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic</u> <u>ion</u>.

$$Ba(NO_3)_2$$

Example: Ammonium sulfate

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>.

Example: Ammonium sulfate

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>.

$$(NH_4)_2 SO_4$$

Example: Iron(III) chloride

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>.

Example: Iron(III) chloride

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>.

Fe Cl 3

Example: Aluminum sulfide

- 1. Write the formulas for the cation and anion, including CHARGES!
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

Example: Aluminum sulfide

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>.

Example: Magnesium carbonate

- 1. Write the formulas for the cation and anion, including CHARGES!
- 2. Check to see if charges are balanced.
- 3. Erase charges.

They are balanced!

Example: Magnesium carbonate

- 1. Write the formulas for the cation and anion, including CHARGES!
- 2. Check to see if charges are balanced.
- 3. Erase charges.

Example: Zinc hydroxide

- 1. Write the formulas for the cation and anion, including CHARGES!
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

 Zn²⁺(OH-)₂
- 4. Erase charges.

Not balanced!

Example: Zinc hydroxide

- 1. Write the formulas for the cation and anion, including CHARGES!
- 2. Check to see if charges are balanced.
- 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion.

 Zn(OH)₂

Example: Aluminum phosphate

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.

3. Erase charges.

They ARE balanced!

Example: Aluminum phosphate

- 1. Write the formulas for the cation and anion, including <u>CHARGES!</u>
- 2. Check to see if charges are balanced.

AIPO₄

Naming Ionic Compounds

- ▶ Cation first, then anion
- Monatomic cation = name of the element
 - $> Ca^{2+} = calcium ion$
- ➤ Monatomic anion = root + -ide
 - >Cl⁻ = chlor<u>ide</u>
 - > CaCl₂ = calcium chloride

Naming Ionic Compounds

- ▶ Cation first, then anion
- Polyatomic cation = name of the ion $> NH_4^+ = ammonium$
- > Polyatomic anion = name of the ion > NO_3^- = nitrate
 - $>NH_4NO_3$ = ammonium nitrate

Naming Ionic Compounds (continued)

Metals with multiple oxidation states

- > some metals form more than one cation
- > use Roman numeral in name
 - > PbCl₂
 - > Pb²⁺ is cation
 - > PbCl₂ = lead(II) chloride

Name the Compounds.

Aluminum oxide 1. Al₂O₃ 2. Fe(OH)₃ Iron(III) hydroxide Sodium sulfide 3. Na₂S Barium sulfate

4. BaSO₄