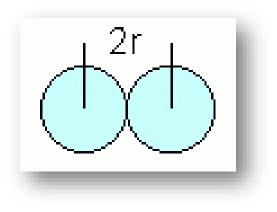

Section 3: Periodic Trends

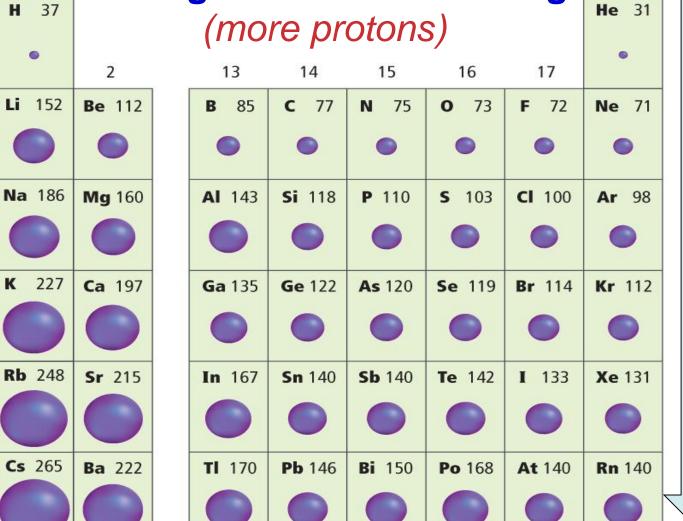
Nuclear Charge


- Nuclear charge is the pull that an electron "feels" from the nucleus.
- The closer an electron is to the nucleus, the more pull it feels.
- As <u>nuclear charge increases</u>, the <u>electron cloud is pulled in tighter</u>.
- Increases across a period.

Shielding

- As more energy levels are added to atoms, the inner layers of electrons shield the outer electrons from the nucleus.
- Outer electrons are less tightly held.
- <u>Constant</u> across a <u>period</u>.
- <u>Increases</u> down a <u>group</u>.

Atomic Radius


 Definition: Half of the distance between nuclei in covalently bonded diatomic molecule

Atomic Radius

decreases across a period

-due to greater nuclear charge 18

-due to more shielding (more energy levels)

ncreases

down

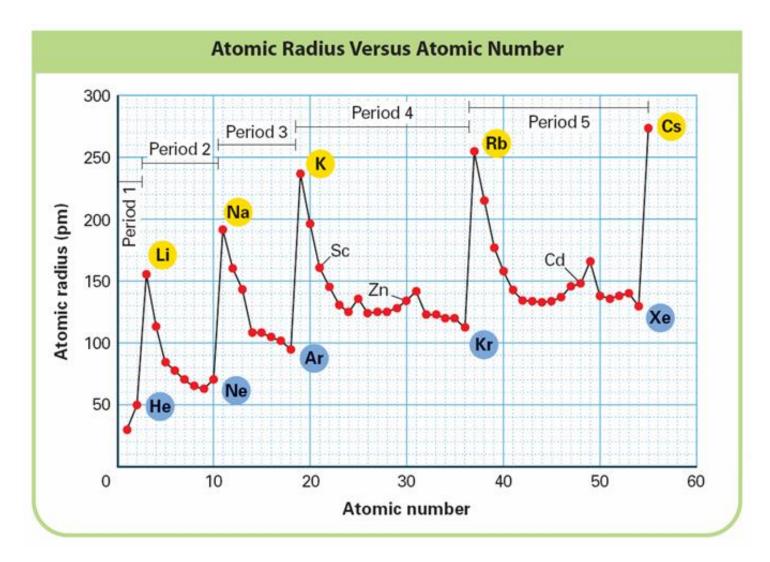
Q

group

6

1

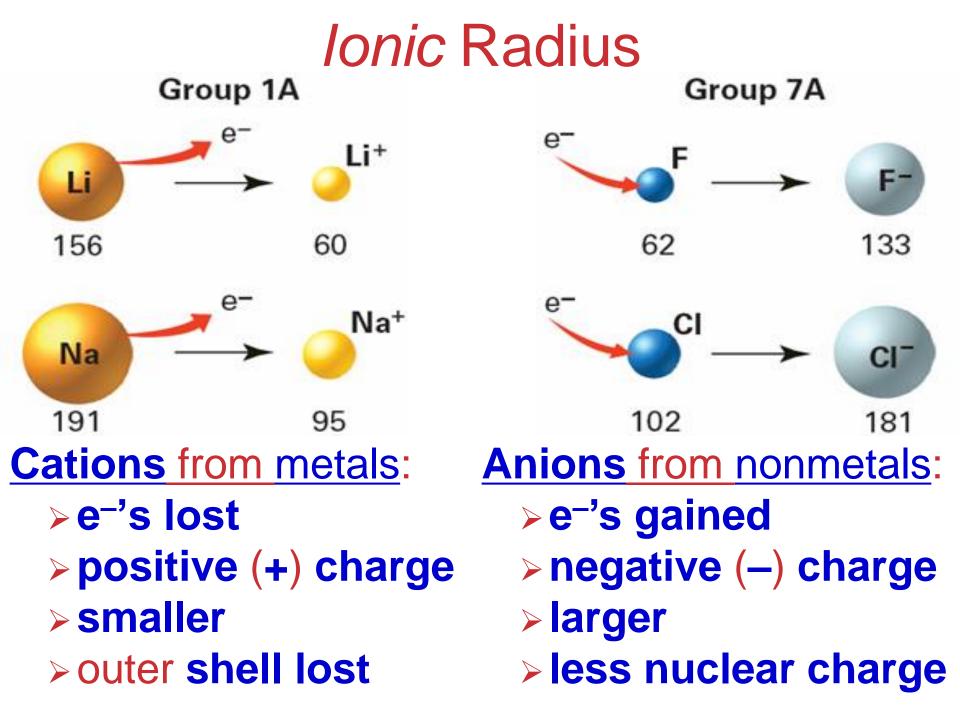
2


3

4

5

K

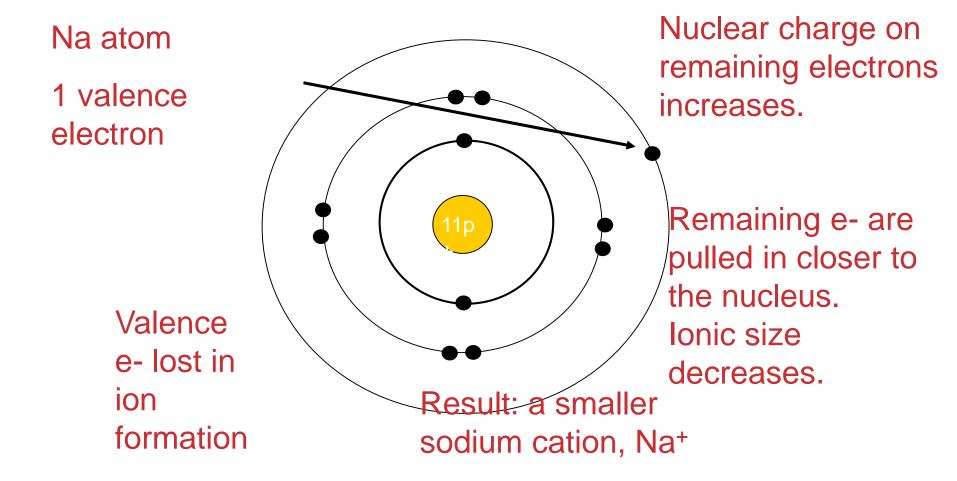

Atomic Radius

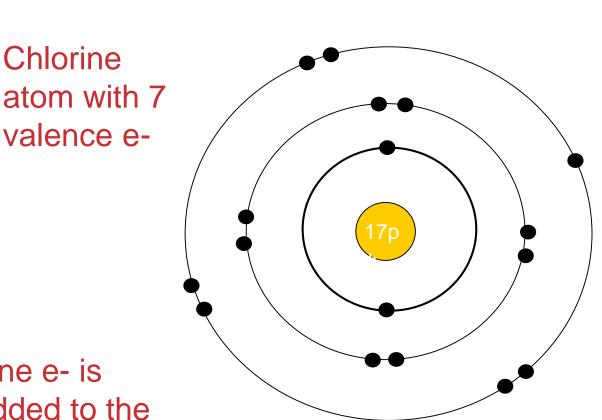
Example of Atomic Radius Trend

• Arrange the following elements in order of increasing atomic radii: Cs, F, K, Cl

А																	VIIA
1	T																2
н																	He
1.008	IA					1	~ 1		- 1			IIA	MA	VA	VIA	VIA	4.003
3	4	Ĩ		F <			\leq	$\langle \langle \rangle$	< (\mathbf{S}		5	6	7	8	9	10
Li	Be			_								в	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	15.99	19	20.18
11	12	Ì										13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	IIB	IVВ	VB	VB	VIB		VIIB		в	IIB	26.98	28.09	30.97	32.07	35.45	39.94
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	-98	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83		85	86
Cs	Ba	La	Hf	Та	w	Re	Os	lr -	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89															
Fr	Ra	Ac															
(223)	226	227															
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	T
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			140.1	140.9	144.2	(145)	150.4	152	157.3	158.9	162.5	164.9	167.3	168.9	173	175	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	T
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			232	231	238	237	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

lons

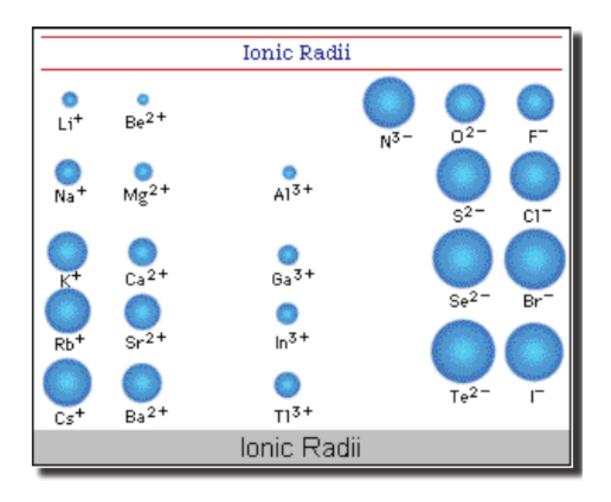

• Here is a simple way to remember which is the cation and which the anion:



This is a cat-ion. He's a "plussy" cat!

Cation Formation

Anion Formation



A chloride ion is produced. It is larger than the original atom.

One e- is added to the outer shell.

Nuclear charge is reduced and the e- cloud expands.

Ionic Radius

Notice that the anions are larger than the cations!

Example of Ionic Radius Trend

• Arrange the following ions in order of increasing ionic radii:

Ca²⁺, K⁺, Al³⁺, S²⁻, Cl⁻, Te²⁻

 $Al^{3+} < Ca^{2+} < K^+$

 $Cl^- < S^{2-} < Te^{2-}$