+WS 2.1 Protons, Neutrons, Electrons

1. Fill in the table below with the correct numbers (first one is done as an example)								
		atomic	mass		# of particles	s #of	# of	# of
symbol	name	number	number	charge	in nucleus	protons	neutrons	electrons
		1		1				,
²³ Na	sodium-23	11	23	0	23	11	12	11
60 -								
²³ Na 11 ⁶⁰ Cu								
	gold - 198							
³⁹ K								
⁴¹ ₁₉ K								
³⁹ K ⁴¹ K ⁴¹ K ⁴¹ K ¹⁺								
		12	25	0				
		36					42	36
				1-	35			18
						7	7	10
				1+	1			
					238	92		92
¹⁴ C								

1. Fill in the table below with the correct numbers (first one is done as an example)

2. How many n's are there in an atom of P-33?____ How many p's in an Fe-58³⁺ ion? _____

3. How many total particles (p, n & e's) are in an O-16 atom? ____ In a F-19¹⁻ ion? _____

4. All chromium particles must have the same number of (p, n or e?) ____

5. (p, n, or e?) The # of _____ determines what element a particle is, the # of _____ determines what isotope of that element, and the # of _____ determines the particle's overall charge.

6. An atom has a mass # of 62 and has 33 neutrons; what element is this atom?

7. A particle has 13 p, 14 n, and 10 e; what is its mass #? ____ What is the particle's charge? _____ What element is it? _____

8. A particle has 35 p, 45 n, and 36 e; what is its mass #? ____ What is the particle's charge? ____ What element is it? ____

9. If a mercury-198 atom were to lose a proton, it would become a _____.

10. If two lithium-6 atoms fused (joined together), it would create a _____.

11. If a thorium-234 atom absorbed a neutron, it would become a _____

12. If a uranium-238 atom were split into two equal halves, it would make two _____

Ans (IRO+2; no names for #1): 0 0 0 0 0 0 0 0 0 3- 3+ 1- 1+ 1 1 1 6 6 6 7 8 12 12 13 14 14 14 14 17 17 18 18 18 19 19 19 19 19 19 19 19 19 20 22 22 24 25 26 27 27 29 29 29 29 31 35 36 39 39 41 41 41 41 60 60 78 78 79 79 79 80 90 92 119 146 198 198 238 p p n e ${}_{1}^{1}H^{1+}$ ${}_{6}^{12}C$ ${}_{7}^{14}N^{3-}$ ${}_{12}^{25}Mg$ Al ${}_{17}^{35}CI^{1-}$ Cu ${}_{36}^{78}Kr$ ${}_{46}^{119}Pd$ Br ${}_{79}^{197}Au$ ${}_{79}^{198}Au$ ${}_{235}^{235}Th$ ${}_{238}^{238}U$